

Hong Kong Security Watch Report

2020 Q2

Release date: Aug 2020

Foreword

Better Security Decision with Situational Awareness

Nowadays, many networked digital devices, such as computers, smartphones, tablets, are being compromised without the user's knowledge. The data on them may be mined and exposed every day, and even be used for various criminal activities.

The Hong Kong Security Watch Report aims to raise public awareness of the problem of compromised systems in Hong Kong, enabling them to make better decision in information security. The data in this quarterly report focuses on the activities of compromised systems in Hong Kong which suffer from, or have participated in various types of cyber attacks, including web defacement, phishing, malware hosting, botnet command and control centres (C&C) or bots. "Computers in Hong Kong" refer to those whose network geolocation is Hong Kong, or the top level domain of their host name is ".hk".

Capitalising on the Power of Global Intelligence

This report is the result of collaboration between the Hong Kong Computer Emergency Response Team Coordination Centre (HKCERT) and global security researchers. Many security researchers have the ability to detect attacks against their own or clients' networks. Some will provide the collected information of IP addresses of attack source or web links of malicious activities to other information security organisations with an aim to collectively improve the overall security of the cyberspace. They have good practice in sanitising personal identifiable data before sharing the information.

HKCERT collects and aggregates such data about Hong Kong from multiple information sources for analysis with the Information Feed Analysis System (IFAS), a system developed by HKCERT. The information sources (Appendix 1) are very diverse and reliable, providing a balanced reflection of the security status of Hong Kong.

HKCERT remove duplicated events reported by multiple sources and use the following metrics for measurement to assure the quality of statistics.

	Table 1: Types of Attack
Type of Attack	Metric used
Defacement, Phishing,	Security events on unique URLs within the
Malware Hosting	reporting period
Botnet (C&Cs)	Security events on unique IP addresses within
	the reporting period
Botnet (Bots)	Maximum daily count of security events on
	unique IP addresses within the reporting period

Better information better service

HKCERT will continue to enhance this report with more valuable information sources and more in-depth analysis, and explore how to best use the data to enhance our services. *Please send your feedback via email* (*hkcert@hkcert.org*).

Limitations

Data collected for this report come from multiple sources with different collection periods, presentation formats and their own limitations. The numbers from the report should be used as a reference only, and should neither be compared directly nor be regarded as a full picture of the reality.

Disclaimer

Data may be subject to update and correction without notice. We shall not have any liability, duty or obligation for or relating to the content and data contained herein, any errors, inaccuracies, omissions or delays in the content and data, or for any actions taken in reliance thereon. In no event shall we be liable for any special, incidental or consequential damages, arising out of the use of the content and data.

License

The content of this report is provided under Creative Commons Attribution 4.0 International License. You may share and adopt the content for any purpose, provided that you attribute the work to HKCERT.

http://creativecommons.org/licenses/by/4.0

Contents

Re	eport Highlights	5
Re	eport Details	10
1	Defacement 1.1 Summary	10
2	Phishing 2.1 Summary	12 12
3	Malware Hosting 3.1 Summary	14 14
4	Botnet 4.1 Botnets Command & Control Centers (C&C)	17
Αp	ppendix	18
Α	Sources of information in IFAS	19
В	Geolocation identification methods in IFAS	19
С	Major Botnet Families	20

Report Highlights

In 2020 Q2, there were 13,365 unique security events related to Hong Kong used for analysis in this report. Data were collected through IFAS¹ with 10 sources of information², and not collected from the incident reports received by HKCERT.

Trend of security events

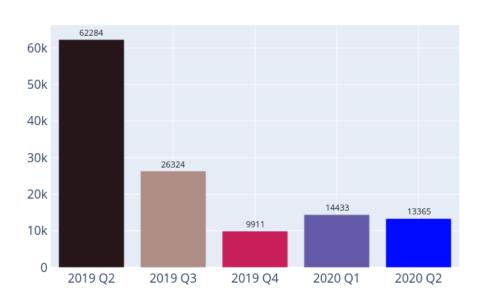


Figure 1: Trend of security events

Table 2: Trend of security events

Event Type	2019 Q2	2019 Q3	2019 Q4	2020 Q1	2020 Q2			
Defacement	532	1,120	591	572	1,062			
Phishing	1,306	849	257	399	2,017			
Malware Hosting	48,892	17,273	1,185	5,445	4,334			
Botnet (Bots)	11,554	7,078	7,878	8,017	5,952			
Botnet (C2)	0	4	0	0	0			

The total number of security events in the second quarter of 2020 was down 7%, from 14,433 in 2020 Q1 to 13,365 in this quarter. Although web defacement and phishing events recorded a significant rise, it was offset by a drop in botnet and malware hosting events, resulting in a slight decrease in overall events.

¹IFAS - Information Feed Analysis System is a HKCERT developed system that collects global security intelligence relating to Hong Kong to provide a picture of the security status.

²Refer to Appendix 1 for the sources of information

Server related security events

Server related security events include malware hosting, phishing and defacement. Their trends and distributions are summarized as below:

50k 40k 30k 20k 10k 0 2019 Q2 2019 Q3 2019 Q4 2020 Q1 2020 Q2

Trend and distribution of server related security events

Figure 2: Trend and distribution of server related security events

As shown in Table 2, the number of URLs involved in phishing events rose by 4 times, from 399 in 2020 Q1 to 2017 in this quarter, while the number of IP addresses involved in increased by 68% (Figure 7) correspondingly. The URL/IP ratio also doubled to 8.62 (Figure 8). As discovered, around 71% of these phishing URLs were spoofing an online gambling website. These websites do not provide any features or information as ordinary websites, but prompt for user name and password once accessed. Our observation is that the rise in phishing events is due to the COVID-19 outbreak as more people work and spend their leisure time at home, increasing the demand for online entertainment. Hackers noticed the needs and therefore create phishing websites which related to epidemic to defraud sensitive information of victims. The account would be taken over by hackers once the user enter the info.

Compared to the previous quarter, the number of defacement events increased by 85% to 1062, while the number of IP addresses involved in defacement increased by 72% to 463 (Figure 5). The highest number of URL being defaced happened on 23 Apr 2020. A total of 106 websites in the same IP address were affected. A hacker gained unauthorised access to the server and then put an ".htm"file to all websites hosted in it to show off the successful compromise. Another notable incident happened on 23 May 2020 as a total of 49 IP addresses containing 64 websites were hacked. Likewise, hacker left a special ".html" file. Based on the file name, it was believed that these 63 websites were hacked by the same threat actor. HKCERT recommends that site administrators can consider deploying a system auditing tool and setting up related checking routine or auto alert to monitor any file changes as an early detection of possible defacement attacks.

The number of malware hosting events decreased by 20% from 5,445 in 2020 Q1 to 4,334 in this quarter. Related IP address number decreased by 63% to 492 (Figure 9). The URL/IP ratio was, however, recorded a one-fold increase from 4.09 to 8.81 (Figure 10). According to the data, the website with most malwares is an unofficial site for software download. HKCERT urges users not to download any software from any unofficial sites.

HKCERT urges system and application administrators to strengthen the protection of servers

- Patch server up-to-date to avoid the known vulnerabilities being exploited
- Update web application and plugins to the latest version
- Follow best practice on user account and password management
- Implement validation check for user input and system output
- Provide strong authentication e.g. two factor authentication, administrative control interface
- Acquire information security knowledge to prevent social engineering attack

Botnet related security events

Botnet related security events can be classified into two categories:

- Botnet Command and Control Centers (C&C) security events involving a small number of powerful computers, mostly servers, which give commands to bots
- Botnet (Bots) security events involving a large number of computers, mostly personal computers which receive commands from C&Cs.

Botnet Command and Control Servers (C&C)

The trend of Botnet (C&C) security events is summarised as below:

Trend of Botnet (C&C) security events

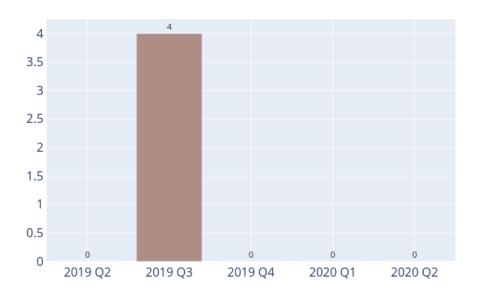


Figure 3: Trend of Botnet (C&Cs) security events

There was no Botnet Command and Control Centers (C&C) security events in this quarter.

The trend of Botnet (Bots) security events is summarised as below:

12k 11554 10k 8017 7878 8k 7078 5952 6k 4k 2k 2019 Q2 2019 Q3 2019 04 2020 Q1 2020 O2

Trend of Botnet (Bots) security events

Figure 4: Trend of Botnet (Bots) security events

The number of botnet (bots) events decreased by 25% to 5,952 in this quarter. Most botnet families had recorded a decrease. Although the Mirai bot fell by 11.3% to 3,969 in this quarter, it still topped the list in Hong Kong in terms of maximum daily count. The largest drop is the Ramnit bot which had a 99% decrease from 816 to 8 and fell out of this quarter's major botnet family chart, and a long-standing bot Tinba filled the gap. Tinba can also act as a Trojan which mainly targets banks to steal sensitive data.

The result of this quarter was counter-intuitive. Originally, it was anticipated as more people adopted work from home (WFH) arrangement during the COVID-19 outbreak, more vulnerable devices would be connected to the Internet and become victims of bot's malware. However, the result implied that the general users had increased their security awareness and had taken proper measures on malware removal. It might possibly do with the fact that WFH arrangement has made users raise their security awareness. HKCERT will keep monitoring the trend and continue with necessary botnet cleanup activities.

HKCERT urges users to take action so as not to become part of the botnets

- Patch the computer
- Install security software and scan for malware
- Set strong passwords to avoid credential based attack
- Do not use Windows, media files and software that have no proper licenses
- Do not use Windows and software that have no security updates
- Do not open files from unreliable sources

HKCERT has been following up the security events received and proactively engaged local ISPs for the botnet cleanup since June 2013. Currently, botnet cleanup operations against major botnet family Avalanche, Pushdo, Citadel, Ramnit, ZeroAccess, GameOver Zeus, VPNFilter and Mirai are still ongoing.

HKCERT urges general users to join the cleanup acts, ensuring their computers are not being infected and controlled by malicious software, and protecting their personal data for a cleaner cyberspace.

Users can follow the HKCERT guideline to detect and clean up botnets

• Botnet Detection and Cleanup Guideline https://www.hkcert.org/botnet

Report Details

1 Defacement

1.1 Summary

Trend of Defacement security events

Figure 5: Trend of Defacement security events

What is defacement?

• Defacement is the unauthorised alteration of the content of a legitimate website using any hacking methods.

What are the potential impacts?

- The integrity of the website content is being damaged
- Original content may be inaccessible
- Reputation of the website owner may be damaged
- Other information stored/processed on the server may be further compromised by hackers to perform other attacks

URL/IP ratio of Defacement security events

Figure 6: URL/IP ratio of Defacement security events

What is URL/IP ratio?

• It is the number of security events count in unique URL divided by the number of security events count in unique IP addresses

What can this ratio indicate?

- Number of events counted in unique URL cannot reflect the number of compromised servers, since one server may contain many URL
- Number of events counted in unique IP address can be better related to the number of compromised servers
- The higher the ratio is, the more mass compromise happened

Sources of Information:

• Zone-H

2 Phishing

2.1 Summary

Trend of Phishing security events

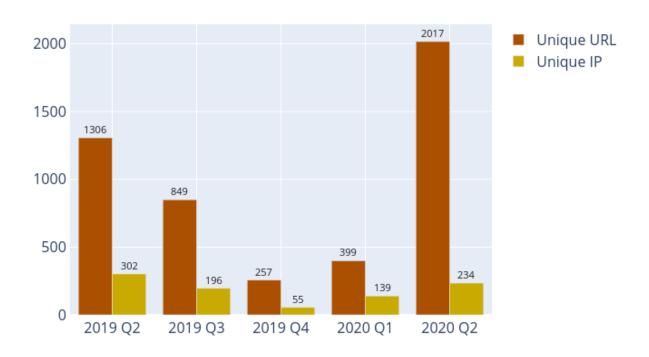


Figure 7: Trend of Phishing security events

What is phishing?

• Phishing is the spoofing of a legitimate website for fraudulent purposes

What are the potential impacts?

- Personal information or account credentials of visitors may be stolen, potentially leading to financial losses
- Original content may be inaccessible
- Reputation of the website owner may be damaged
- Server may be further compromised to perform other attacks

URL/IP ratio of Phishing security events

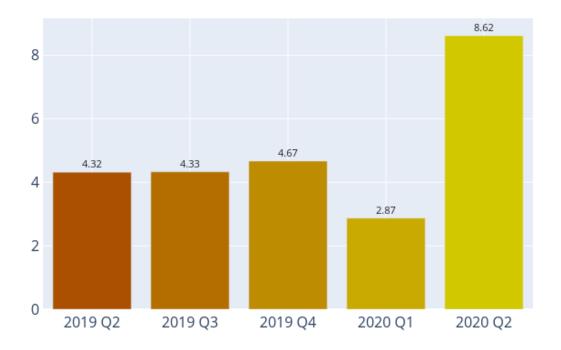


Figure 8: URL/IP ratio of Phishing security events

What is URL/IP ratio?

• It is the number of security events count in unique URL divided by the number of security events count in unique IP addresses

What can this ratio indicate?

- Number of events counted in unique URL cannot reflect the number of compromised servers, since one server may contain many URL
- Number of events counted in unique IP address can be better related to the number of compromised servers
- The higher the ratio is, the more mass compromise happened

Sources of Information:

- · CleanMX phishing
- Phishtank

3 Malware Hosting

3.1 Summary

Trend of Malware Hosting security events

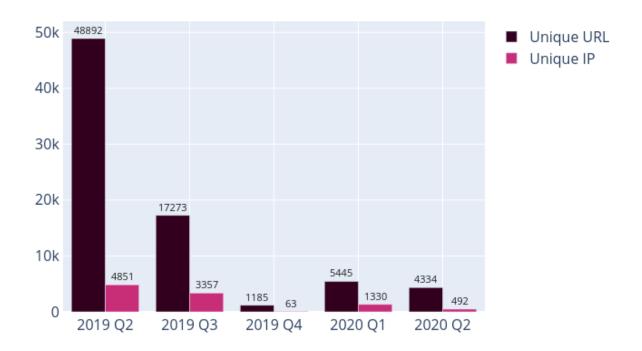


Figure 9: Trend of Malware Hosting security events

What is malware hosting?

• Malware hosting is the dispatching of malware on a website

What are the potential impacts?

- Visitors may download and install the malware, or execute the malicious script to have their devices hacked
- Original content may be inaccessible
- Reputation of the website owner may be damaged
- Server may be further compromised to perform other hacking or even criminal activities

URL/IP ratio of Malware Hosting security events

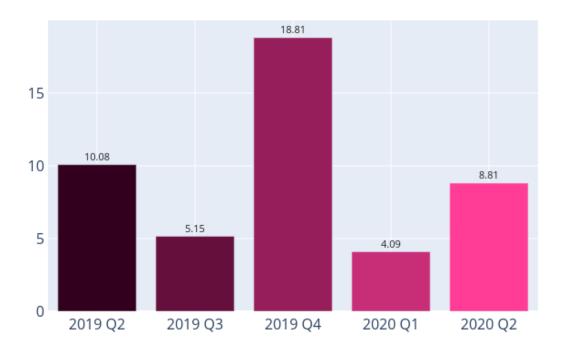


Figure 10: URL/IP ratio of Malware Hosting security events

What is URL/IP ratio?

• It is the number of security events count in unique URL divided by the number of security events count in unique IP addresses

What can this ratio indicate?

- Number of events counted in unique URL cannot reflect the number of compromised servers, since one server may contain many URL
- Number of events counted in unique IP address can be better related to the number of compromised servers
- The higher the ratio is, the more mass compromise happened

Sources of Information:

- CleanMX Malware
- Malc0de
- MalwareDomainList

4 Botnet

4.1 Botnets Command & Control Centers (C&C)

Trend and distribution of Botnet (C&Cs) security events

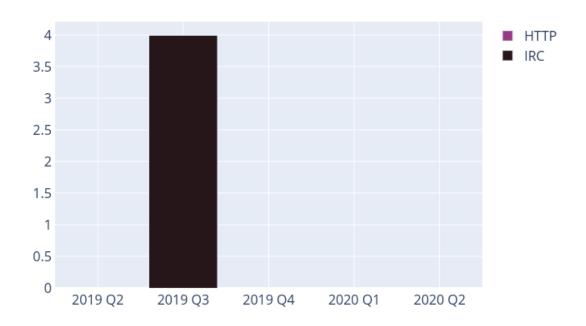


Figure 11: Trend and distribution of Botnet (C&Cs) security events

What is a Botnet Command & Control Center?

 Botnet Command & Control Center is a server used by cybercriminals to control the bots, which are compromised computers, by sending them commands to perform malicious activities, e.g. stealing personal financial information or launching DDoS attacks

What are the potential impacts?

- A server may be heavily loaded when many bots connect to it
- A server may have a large amount of personal and financial data stolen

Sources of Information:

Shadowserver - C&Cs

4.2 Botnets (Bots)

4.2.1 Major Botnet Families

Major Botnet families are selected botnet families with a considerable amount of security events reported from the information sources consistently across the reporting period.

Individual botnet's size is calculated from the maximum of the daily counts of unique IP address attempting to connect to the botnet in the reporting period. In other words, the real botnet size should be larger because not all bots are activated on the same day.

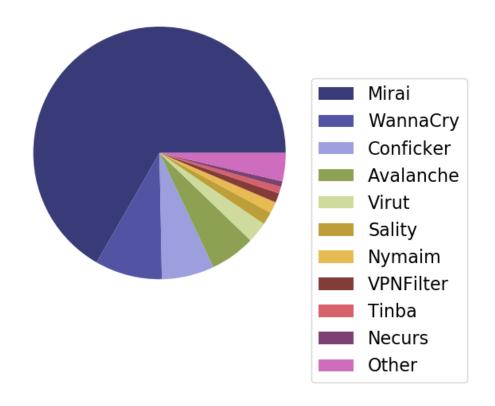


Figure 12: Major Botnet families in Hong Kong network

Table 3: Major Botnet families in Hong Kong network

Rank	Λ₩	Concerned Bots	Number of Unique	Changes with
			IP addresses	previous period
1	\rightarrow	Mirai	3,969	-11.3%
2	\uparrow	WannaCry	513	13.0%
3	\uparrow	Conficker	400	-7.4%
4	\Downarrow	Avalanche	345	-56.3%
5	\uparrow	Virut	160	-6.4%
6	\uparrow	Sality	97	-27.1%
7	\Downarrow	Nymaim	87	-78.4%
8	\uparrow	VPNFilter	72	0.0%
9	\uparrow	Tinba	51	37.8%
10	\rightarrow	Necurs	43	-18.9%

Trend of 5 Botnet families in Hong Kong network

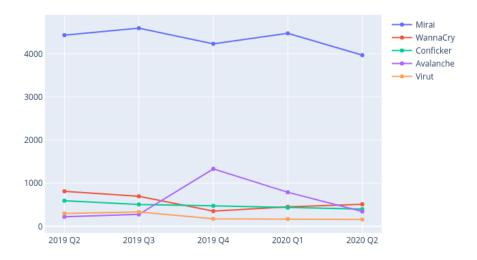


Figure 13: Trend of top 5 Botnet families in Hong Kong network

Table 4: Trend of top 5 Botnet families in Hong Kong network

Name	2019 Q2	2019 Q3	2019 Q4	2020 Q1	2020 Q2
Mirai	4,432	4,594	4,231	4,474	3,969
WannaCry	813	697	354	454	513
Conficker	594	508	476	432	400
Avalanche	222	277	1,333	790	345
Virut	299	332	175	171	160

What is a Botnet (Bots)?

 A Botnet (Bots) is usually a personal computer that is infected by malicious software to become part of a botnet. Once infected, the malicious software usually hides itself, and stealthily connects to the Command & Control Server to get instructions from the hackers.

What are the potential impacts?

- Computers may be commanded to perform other hacking or criminal activities
- Computer owner's personal and financial data may be stolen which may lead to financial loss
- Commands from hackers may lead to other malicious activities, e.g. spreading malicious software or launching DDoS attacks

Sources of Information:

- ShadowServer botnet_drone
- ShadowServer sinkhole_http_drone
- Shadowserver Microsoft_sinkhole

Appendix

A Sources of information in IFAS

The following information feeds are information sources of IFAS:

Table 5: IFAS Sources of Information **Event Type** Source First introduced Defacement 2013-04 Zone - H CleanMX - Phishing Phishing 2013-04 **Phishing** Phishtank 2013-04 Malware Hosting CleanMX - Malware 2013-04 **Malware Hosting** Malc0de 2013-04 Malware Hosting MalwareDomainList 2013-04 Shadowserver - C&Cs 2013-09 Botnet (C&Cs) Botnet (Bots) Shadowserver - botnet_drone 2013-08 Botnet (Bots) Shadowserver - sinkhole http drone 2013-08 Botnet (Bots) Shadowserver - microsoft_sinkhole 2013-08

B Geolocation identification methods in IFAS

We use the following methods to identify if a network's geolocation is in Hong Kong:

Table 6: Methods of Geolocation Identification

Method First introduced Last update

Maxmind 2013-04 2020-08

C Major Botnet Families

	_	D	
Ianie	,.	KATHAT	Families
Iabic		DOLLICE	I allillics

Major Botnets	Alias	Nature	Infection Method	Attacks / Impacts
Avalanche	Nil	Crimeware-as- a-service	 Depends on underlying malwares 	Send spamsHost phishing sitesHost malwareSteal sensitive information
Bamital	Nil	Trojan	Drive-by download via exploit kitVia P2P network	Click fraud Search hijacking
BankPatch	MultiBankerPatcherBankPatcher	Banking Trojan	 Via adult web sites Corrupt multimedia codecs Spam e-mail Chat and messaging systems 	 Monitor specific banking websites and harvest user's passwords, credit card information and other sensitive financial data
Bedep	Nil	Trojan	 Via adult web sites Malvertising	 Click fraud Download other malwares
BlackEnergy	Nil	DDoS Trojan	 Rootkit techniques to maintain persistence Uses process injection technique Strong encryption and modular architecture 	Launch DDoS attacks
Citadel	Nil	Banking Trojan	Avoid and disable security tool detection	 Steal banking credentials and sensitive information Keystroke logging Screenshot capture Video capture Man-in-the-browser attack Ransomware
Conficker	DownadupKido	Worm	 Domain generation algorithm (DGA) capability Communicate via P2P network Disable security software 	 Exploit the Windows Server Service vulnerability (MS08-067) Brute force attacks for admin credential to spread across network Spread via removable drives using "autorun" feature

Table 8: Botnet Families (cont.)

Major Botnets	Alias	Nature	Infection Method	Attacks / Impacts
Corebot	Nil	Banking Trojan	 Via droppers 	 Steal sensitive
				information
				 Install other malware
				 Backdoor capabilities
				that allow unauthorised
				access
Dyre	Nil	Banking Trojan	Spam e-mail	Steal banking
•			·	credential by tricking
				the victim to call an
				illegitimate number
				 Send spams
Gamarue	Andromeda	Downloader/	Via exploit kit	Steal sensitive
Garriarae	7 maromeda	Worm	Spam e-mail	information
		VVOITII	MS Word macro	Allow unauthorised
			 Removable-drives 	access
				Install other malware
Ghost Push	Nil	Mobile malware	 Via app installation 	 Gain root access
				 Download other malware
Glupteba	Nil	Trojan	 Drive-by download via 	 Push contextual
			Blackhole Exploit Kit	advertising and
				clickjacking to victims
IRC Botnet	Nil	Trojan	Communicate via IRC	Backdoor capabilities
		•	network	that allow unauthorised
				access
				 Launch DDoS attack
				Send spams
Mirai	Nil	Worm	Telnet with vendor	Launch DDoS attacks
IVIII GI	IVII	WOITH	default credentials	- Laurier DD03 attacks
Murofet	Nil	Trojan	File infection	Download other malware
Muldlet	INII	појан	 Via exploit kits 	• Download Other malware
NI: al a at	N1:1	Tueien	<u> </u>	. Charles and doubles
Nivdort	Nil	Trojan	 Spam e-mail 	Steal login credentials
				and sensitive information
Nymaim	Nil	Trojan	Spam e-mail	 Lock infected systems
			 Malicious link 	 Stop victims from
				accessing files
				 Ask for ransom
Matsnu	Nil	Trojan	 Spam e-mail 	 Backdoor capabilities
				that allow unauthorised
				access
				 Lock infected systems
				Encrypt user data
				Ask for ransom
Palevo	Rimecud	Worm	Spread via instant	Backdoor capabilities
. 3.0.0	Butterfly		messaging, P2P network	that allow unauthorised
	bot		and removable drives	access
			and removable unives	
	• Pilleuz			Steal login
	 Mariposa 			credentials and
	Vaklik			sensitive information
				 Steal money directly
				from banks using money
				mules

Table 9: Botnet Families (cont.)

Major Botnets	Alias	Nature	Infection Method	Attacks / Impacts
Pushdo	CutwailPandex	Downloader	 Hiding its malicious network traffic Domain generation algorithm (DGA) capability Distribute via drive by download Exploit browser and plugins' vulnerabilities 	 Download other banking malware (e.g. Zeus and Spyeye) Launch DDoS attacks Send spams
Ramnit	Nil	Worm	File infectionVia exploit kitsPublic FTP servers	 Backdoor capabilities that allow unauthorised access Steal login credentials and sensitive information
Sality	Nil	Trojan	 Rootkit techniques to maintain persistence Communicate via P2P network Spread via removable drives and shares Disable security software Use polymorphic and entry point obscuring (EPO) techniques to infect files 	 Send spams Proxying of communications Steal sensitive information Compromise web servers and/or coordinating distributed computing tasks for the purpose of processing intensive tasks (e.g. password cracking) Install other malware
Slenfbot	Nil	Worm	Spread via removable drives and shares	 Backdoor capabilities that allow unauthorised access Download financial malware Sending spam Launch DDoS attacks
Tinba	TinyBankerZusy	Banking Trojan	Via exploit kitSpam e-mail	 Steal banking credential and sensitive information
Torpig	SinowalAnserin	Trojan	 Rootkit techniques to maintain persistence (Mebroot rootkit) Domain generation algorithm (DGA) capability Distribute via drive by download 	Steal sensitive informationMan in the browser attack

Table 10: Botnet Families (cont.)

Major Botnets	Alias	Nature	Infection Method	Attacks / Impacts
Virut	Nil	Trojan	 Spread via removable drives and shares 	Send spamsLaunch DDoS attacksFraudData theft
VPNFilter	Nil	Worm	 Possibly exploit device vulnerabilities 	 Launch network attacks Leak network traffic flowing through the infected devices Disrupt Internet connection
WannaCry	WannaCrypt	Ransomware	Spread across networkExploit Windows SMB vulnerabilities	Encrypt user dataDemand ransomData unrecoverable
Wapomi	Nil	Worm	 Spread via removable drives and shares Infects executable files 	 Backdoor capabilities Download and drop additional destructive payloads Alter important files causing unreliable system performance Gather computer activity, transmit private data and cause sluggish computer
ZeroAccess	Max++Sirefef	Trojan	 Rootkit techniques to maintain persistence Communicate via P2P network Distribute via drive by download Distribute via disguise as legitimate file (eg. media files, keygen) 	 Download other malware Bitcoin mining and click fraud
Zeus	Gameover	Banking Trojan	 Stealthy techniques to maintain persistence Distribute via drive by download Communicate via P2P network 	 Steal banking credential and sensitive information Man in the browser attack Keystroke logging Download other malware (eg. Cryptolocker) Launch DDoS attacks